客服熱線:0551-69106578 業(yè)務(wù)咨詢:0551-69106578 郵箱:2268263116@qq.com
Copyright (c) 2012 機(jī)電產(chǎn)品交易網(wǎng) . 版權(quán)所有 皖I(lǐng)CP備12004440號(hào)-2
《科學(xué)》發(fā)表特邀綜述論文,詳細(xì)闡述了利用納米尺度共格界面強(qiáng)化材料的研究成果,如何提高材料的強(qiáng)度而不損失其塑性這是眾多材料科學(xué)家面臨的一個(gè)重大挑戰(zhàn)。為了使材料強(qiáng)化后獲得良好的綜合強(qiáng)韌性能,強(qiáng)化界面應(yīng)具備三個(gè)關(guān)鍵結(jié)構(gòu)特征:(1)界面與基體之間具有晶體學(xué)共格關(guān)系;(2)界面具有良好的熱穩(wěn)定性和機(jī)械穩(wěn)定性;(3)界面特征尺寸在納米量級(jí)(<100nm)。進(jìn)而,盧柯等研究人員提出了一種新的材料強(qiáng)化原理及途徑——利用納米尺度共格界面強(qiáng)化材料。
提高材料的強(qiáng)度是幾個(gè)世紀(jì)以來材料研究的核心問題。迄今為止強(qiáng)化材料的途徑可分為四類:固溶強(qiáng)化、第二相彌散強(qiáng)化、加工(或應(yīng)變)強(qiáng)化和晶粒細(xì)化強(qiáng)化。這些強(qiáng)化技術(shù)的實(shí)質(zhì)是通過引入各種缺陷(點(diǎn)缺陷、線、面及體缺陷等)阻礙位錯(cuò)運(yùn)動(dòng),使材料難以產(chǎn)生塑性變形而提高強(qiáng)度。但材料強(qiáng)化的同時(shí)往往伴隨著塑性或韌性的急劇下降,造成高強(qiáng)度材料往往缺乏塑性和韌性,而高塑韌性材料的強(qiáng)度往往很低。長期以來這種材料的強(qiáng)韌性“倒置關(guān)系”成為材料領(lǐng)域的重大科學(xué)難題和制約材料發(fā)展的重要瓶頸。
傳統(tǒng)的材料強(qiáng)化技術(shù)多利用普通非共格晶界或相界阻礙位錯(cuò)運(yùn)動(dòng)來提高強(qiáng)度。當(dāng)材料中引入大量非共格晶界時(shí),強(qiáng)度顯著提高(如納米晶體材料的強(qiáng)度較粗晶體材料高一個(gè)數(shù)量級(jí)),但隨著位錯(cuò)運(yùn)動(dòng)“阻礙物”(即非共格晶界)的不斷增多,晶格位錯(cuò)運(yùn)動(dòng)受到嚴(yán)重阻礙甚至被完全抑制而不能協(xié)調(diào)塑性變形,因此材料變脆。
共格晶界或相界是一類特殊而常見的低能態(tài)界面,結(jié)構(gòu)特征是界面上的原子同時(shí)位于其兩側(cè)晶格的結(jié)點(diǎn)上,即界面兩側(cè)的晶格點(diǎn)陣彼此銜接,界面上的原子為兩者共有。一些共格晶界(如小角度傾側(cè)晶界)對(duì)位錯(cuò)運(yùn)動(dòng)的阻礙能力弱,因而不能有效地強(qiáng)化材料;而另一些共格或半共格晶界則可有效地阻礙位錯(cuò)運(yùn)動(dòng),具有強(qiáng)化效應(yīng),例如沉淀強(qiáng)化Al-Cu合金中的GP區(qū)和Ni基合金中的或沉淀相等。但是,這些沉淀相中共格界面穩(wěn)定性低,當(dāng)沉淀相長大后共格關(guān)系即消失;孿晶界是一種特殊的共格晶界,其兩側(cè)的晶格呈鏡面對(duì)稱。盡管研究表明在一些退火態(tài)合金中單個(gè)孿晶界對(duì)位錯(cuò)的阻礙作用與普通晶界相當(dāng),但是由于孿晶界數(shù)量較少,其總體強(qiáng)化效應(yīng)遠(yuǎn)弱于其他強(qiáng)化機(jī)制(如固溶強(qiáng)化和細(xì)晶強(qiáng)化等)。因此,長期以來人們一直沒有將共格界面作為一種可有效強(qiáng)化材料的界面來加以利用。
然而,共格界面的獨(dú)特結(jié)構(gòu)使其具有一些特殊力學(xué)行為,部分共格界面(如孿晶界)既可阻礙位錯(cuò)運(yùn)動(dòng),又可作為位錯(cuò)的滑移面在變形過程中吸納和儲(chǔ)存位錯(cuò),因而對(duì)提高材料的韌塑性有貢獻(xiàn)。若能有效地提高共格界面的穩(wěn)定性,增加共格界面的密度,則可利用共格界面提高材料的強(qiáng)度,并同時(shí)提高其韌塑性。
盧柯等人研究發(fā)現(xiàn),納米尺度孿晶界面具備上述強(qiáng)化界面的三個(gè)基本結(jié)構(gòu)特征。他們利用脈沖電解沉積技術(shù)成功地在純銅樣品中制備出具有高密度納米尺度的孿晶結(jié)構(gòu)(孿晶層片厚度<100nm)。發(fā)現(xiàn)隨孿晶層片厚度減小,樣品的強(qiáng)度和拉伸塑性同步顯著提高。當(dāng)層片厚度為15nm時(shí),拉伸屈服強(qiáng)度接近1.0GPa(是普通粗晶Cu的十倍以上),拉伸均勻延伸率可達(dá)13%。顯然,這種使強(qiáng)度和塑性同步提高的納米孿晶強(qiáng)化與其他傳統(tǒng)強(qiáng)化技術(shù)截然不同。理論分析和分子動(dòng)力學(xué)模擬表明,高密度孿晶材料表現(xiàn)出的超高強(qiáng)度和高塑性源于納米尺度孿晶界與位錯(cuò)的獨(dú)特相互作用。例如當(dāng)一個(gè)刃型位錯(cuò)與一孿晶界相遇時(shí),位錯(cuò)與孿晶界反應(yīng)可生成一個(gè)新刃型位錯(cuò)在孿晶層片內(nèi)滑移,同時(shí)可在孿晶界上產(chǎn)生一個(gè)新的不全位錯(cuò),該位錯(cuò)可在孿晶界上滑移。當(dāng)孿晶層片在納米尺度時(shí),位錯(cuò)與大量孿晶相互作用,使強(qiáng)度不斷提高。同時(shí),在孿晶界上產(chǎn)生大量可動(dòng)不全位錯(cuò),他們的滑移和貯存為樣品帶來高塑性和高加工強(qiáng)化。由此可見,利用納米尺度孿晶可使金屬材料強(qiáng)化的同時(shí)也可提高韌塑性。
材料中納米尺度孿晶界可以通過多種制備技術(shù)獲得,如利用電解沉積、磁控濺射沉積、塑性變形或退火再結(jié)晶等工藝均可在金屬中產(chǎn)生納米尺度孿晶。研究表明,沉積速率越快形成的孿晶層片越薄。如在脈沖電解沉積中當(dāng)沉積速度超過4nm/s時(shí),Cu樣品中的平均孿晶層片小于20nm。塑性變形誘發(fā)的孿晶在中低層錯(cuò)能材料(如Cu、Cu合金及不銹鋼等)十分普遍,提高應(yīng)變速率或降低變形溫度等均有助于孿晶形成。盧柯等人近期發(fā)展的動(dòng)態(tài)塑性變形(DPD)技術(shù)可使材料中形成大量的納米尺度孿晶界,已成為制備塊狀納米孿晶結(jié)構(gòu)的有效途徑。利用納米尺度共格晶界強(qiáng)化材料還可以帶來優(yōu)異的電學(xué)性能。研究表明,超高強(qiáng)度納米孿晶Cu樣品具有與無氧高純銅相當(dāng)?shù)母唠妼?dǎo)率,可同時(shí)實(shí)現(xiàn)高強(qiáng)度高導(dǎo)電性。納米孿晶結(jié)構(gòu)可有效降低Cu中電致原子的擴(kuò)散遷移率,從而大大降低電遷移效應(yīng),這為減少微電子器件中銅線的電遷移損傷找到了新的解決途徑。也有學(xué)者發(fā)現(xiàn)納米孿晶結(jié)構(gòu)可有效提高材料的阻尼性能,為研發(fā)高性能阻尼材料開辟了新途徑。
利用納米尺度共格界面強(qiáng)化材料已成為一種提高材料綜合性能的新途徑。盡管在納米尺度共格界面的制備技術(shù)、控制生長,及各種理化性能、力學(xué)性能和使役行為探索等方面仍然存在諸多挑戰(zhàn),但這種新的強(qiáng)化途徑在提高工程材料綜合性能方面表現(xiàn)出巨大的發(fā)展?jié)摿蛷V闊的應(yīng)用前景。
客服熱線:0551-69106578 業(yè)務(wù)咨詢:0551-69106578 郵箱:2268263116@qq.com
Copyright (c) 2012 機(jī)電產(chǎn)品交易網(wǎng) . 版權(quán)所有 皖I(lǐng)CP備12004440號(hào)-2